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ABSTRACT
Social networks are heterogeneous systems composed of dif-
ferent types of nodes (e.g. users, content, groups, etc.) and
relations (e.g. social or similarity relations). While learn-
ing and performing inference on homogeneous networks have
motivated a large amount of research, few work exists on
heterogeneous networks and there are open and challenging
issues for existing methods that were previously developed
for homogeneous networks. We address here the specific
problem of nodes classification and tagging in heterogeneous
social networks, where different types of nodes are consid-
ered, each type with its own label or tag set. We propose a
new method for learning node representations onto a latent
space, common to all the different node types. Inference is
then performed in this latent space. In this framework, two
nodes connected in the network will tend to share similar
representations regardless of their types. This allows bypass-
ing limitations of the methods based on direct extensions
of homogenous frameworks and exploiting the dependencies
and correlations between the different node types. The pro-
posed method is tested on two representative datasets and
compared to state-of-the-art methods and to baselines.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; E.1 [Data]: Data
Structures—Graphs and networks

Keywords
Machine learning; Classification; Social networks

1. INTRODUCTION
Social Media on the Web are most often complex hetero-

geneous networks with nodes and relations between nodes
of different types, corresponding to different objects, con-
cepts and relationships. Classical examples include user con-
tent networks like Flickr where nodes correspond to users,
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Figure 1: Bibliographic heterogeneous network with
authors and articles connected. Authors are la-
beled with topic names (IR = Information Re-
trieval), while articles are labeled with conference
venue names.

photos, comments, tags, and relations to friendship or au-
thorship, or bibliographic networks like DBLP with nodes
corresponding to authors, papers, venues, terms and rela-
tions to citations, co-authorship, proceedings, contained in,
etc. Heterogeneous networks also frequently occur in other
domains like e-commerce sites with users, items, comments
and reviews, or recommendation sites such as TripAdvisor.
Modeling and analyzing such complex networks has recently
been explored for generic data mining tasks such as classi-
fication [2], clustering [22], link prediction [5] or influence
analysis [16] and is still largely an open area.

In this article, we consider the task of node classification
in heterogeneous networks composed of different types of
nodes, each node type beging associated with its own set
of labels. For instance, in a bibliographic network, authors
and papers might be labeled respectively by their research
topic and conference name (see Figure 1), while in the Flickr,
network users and photos might be respectively labeled by
subscribed groups reflecting their topic interests and visual
tags. Much work has been devoted to classification for ho-
mogeneous networks composed of a single node type, e.g.
[3, 17, 19, 27] to cite a few. Classification in heterogeneous
networks, representative of real world media, is much more
recent with only a few attempts for now. Many of them rely
on the idea of mapping an heterogeneous network onto an
homogeneous network so that classical relational techniques
are then used [8, 10, 14, 2]. They do not fully exploit the
correlations between the different node labels or character-
istics. Moreover, many of these methods also make strong
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Figure 2: Two matrices illustrating the inter-
dependencies between labels of connected nodes of
different types for DBLP data. Left matrix corre-
sponds to P (Author − topic|Article− conference) while
right matrix illustrates P (Article−conference|Author−
topic). The darker the square is, the higher the
probability value. Both matrices show strong cor-
relations between the topics of an author and the
conference names.

hypothesis on the nature of the task that is not realistic for
real world situations.

The assumption we make in the paper is that nodes of
different types do influence each other, so that labels
of the different node types will be inter-dependent; mod-
eling this dependence between different node types is thus
important for accurate node classification or labeling and
cannot be achieved via classical homogeneous network for-
mulations. For example, in a Flickr network, the groups
a user belongs to will be related to the tags the user has
been using or the comments he has posted and vice versa.
This assumption is illustrated in Figure 2 which shows some
statistics computed over a heterogeneous bibliographic net-
work extracted from DBLP. The DBLP graph is composed
of authors and scientific articles connected through an au-
thorship relation1. Authors are labeled with 4 different top-
ics — IR = Information retrieval, DB = Database, DM =
Data Mining, AI = Artificial Intelligence — while articles
are labeled with 20 possible conferences they have been pub-
lished in. The left side of Figures 2 (left) shows the values
of the probability P (Author − topic|Article − conference)
i.e. the probability that an author node has the label topic
given that one of its neighboring article nodes has the label
conference. Similarly, the right side of Figure 2 (right) il-
lustrates the probability P (Article− conference|Author −
topic). Figure 2 exhibits strong correlations between the
two label sets and confirms that the correlation between
the labels of different nodes may be used for classification.

We propose a new algorithm for learning to label nodes
in an heterogeneous network to exploit dependencies on la-
bel sets and node characteristics and relationships between
different node types. The proposed algorithm operates in
the transductive setting and makes use of a regularization
framework. It can be used for labeling nodes of different
types with different label sets, and with any graph structure.

1The dataset is described in Section 4.1.

It is designed to learn the dependencies between the label
sets associated to the different node types, and to infer the
labels associated to a node by exploiting both global graph
properties and local node neighborhood characteristics.

It is important to mention that the proposed algorithm
learns a latent representation of the network nodes so that all
nodes, irrespectively of their type, will share a common la-
tent space. Such representation will then be effectively used
to infer the categories. Unlike unsupervised relational data
projection methods [23, 4], our method is semi-supervised
so that the projection space exploits both the relational
structure and the labeled information. In other words, the
algorithm makes use of the heterogeneous training labels
to constrain the projection, by encouraging nodes with the
same labels to have close latent representations. Moreover,
it takes the correlations between the labels of different node
types into account when learning the latent representation.
Consequently, the model learns simultaneously a metric as-
sociated to the heterogeneous classification problem and a
way to label the nodes given this metric space. Additionally,
the same formulation can be naturally extended to model-
ing node attributes, such as content information associated
to the nodes in our context, by simply considering these
attributes as specific nodes.

The main contributions are: (i) (i) an effective method
for mapping nodes representtions onto a common lateent
space: This mapping exploits the dependencies on the node
label sets, and relationships between these labels sets and
the node characteristics. This new method allows a simple
formulation of the classication problem in an heterogeneous
setting; (ii) An algorithm to solve the general classication
problem in heterogeneous networks under a general assump-
tion about the node classes or the relations between nodes.
In particular it can handle the challenging case of non in-
tersecting label sets between the different node types. All
the dependencies are learned directly from the data with-
out necessitating a user-defined or a heuristic pre-processing
procedure to perform graph projection.

The paper is organized as follows: Section 2 presents the
notations, and introduces some background concerning clas-
sical graph labeling models for homogeneous networks. Sec-
tion 3 describes the proposed algorithm and an extension for
incorporating node content information to the model. Sec-
tion 4 presents experimental results on two datasets, and
a qualitative analysis of the latent representations learned
by the model. Section 5 provides a synthesis of the related
literature.

2. BACKGROUND AND NOTATIONS

2.1 Notations
A heterogeneous network will be modeled as an undirected

weighted graph with a node type associated to each node.
Let us denote by T = 1, 2, . . . , T the set of T possible

nodes types. Nodes are denoted xi, and edges wi,j ∈ R,
where wi,j is the weight of the relation between xi and xj .
wi,j = 0 if there is no link between xi and xj , the number of
nodes is N . We will denote ti ∈ T the node type xi, Yt the
set of categories associated to the type of node t, and Ct the
cardinality of Yt. We consider a transductive context where
the network is composed of ` < N labeled nodes (x1, . . . , x`)

with ∀i ∈ {1 . . . `}, yi ∈ RC
ti

, and N − l unlabeled nodes.
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The component j of yi, denoted by yji , is defined as yji = +1

if xi belongs to category j, and yji = −1 otherwise.

2.2 Homogeneous Label Propagation Model
When there is only one type of node i.e. T = 1, classical

transductive models exploit the manifold assumption where
two connected nodes tend to have the same labels. Let us
denote by ŷi the vector of scores for the categories predicted
at any node xi in the network. Transductive learning in
graph models often uses a loss function with the following
form [1, 27, 28]:

(ŷ1, . . . , ŷN ) = argmin
ỹ1,..., ˜yN

∑̀
i=1

∆(ỹi, yi) + λ
∑
i,j

wi,j ||ỹi − ỹj ||2

(1)
where ∆ corresponds to the cost of predicting scores ỹi in-
stead of true categories yi for labeled nodes and ||ỹi − ỹj ||2
is a regularization term that encourages connected nodes to
have the same score. λ is an hyper-parameter that corre-
sponds to the smoothness one wants to obtain on the net-
work structure. Many variations of this formulation have
been proposed with different prediction and regularization
losses. Different techniques can be used to minimize this
function such as plain or stochastic gradient-descent algo-
rithm, coordinate descent methods and random walks.

2.3 Extending the homogeneous setting to het-
erogeneous networks

The homogeneous framework can be extended in multiple
ways to handle the case of heterogeneous networks [11, 8,
2]. Our claim is that such extensions do not allow one to
fully benefit from the information present in the heteroge-
neous network and in particular from the correlations and
dependencies between the different node labels.

As an illustration, let us consider the case of a graph com-
posed of two types of nodes 1 and 2 with label sets Y1 and
Y2 — see Figure 3 (a). It is not possible to make a direct
propagation of labels from Y1 to Y2 since the two label sets
are different and correspond to different label semantics. A
common solution is to map the heterogeneous graph onto
one or more homogeneous graphs as illustrated in Figure 3
(b) and (c) and to perform label propagation on the differ-
ent graphs. This mapping may be defined either explicitly
through graph projections or implicitly through the algo-
rithm like in [2, 14] for example. It has two drawbacks: (i)
Dependencies between the two types of labels are lost, since
the labels predicted for one node are only dependent of the
labels of its neighbors of the same type. For example, a
relation like users labeled as ”old” are connected to pictures
labeled as ”flowers” cannot be preserved by such projection.
The more node types there are, the more this loss of in-
formation is important. (ii) Extending this idea to more
complex graphs could be problematic, and the correspond-
ing semantic can become complex. Consider for example the
case of multiple (more than 2) node types. There are mul-
tiple ways to define such mappings, paths joining two nodes
of the same type could be of different lengths with different
node types on the path. What could then be the semantic
of a link between two nodes of a given type? How to weight
these links?
These are main reasons why such extensions are often lim-
ited by simplifying assumptions on the nature of the graphs,
the label sets or the relations. A simple example is provided

in Figure 3 (c), where there are multiple possible projections
to an homogeneous graph for the photos. One can con-
nect the photos published by the same user (giving a graph
with multiple components). Or one can connect the pho-
tos published by the same user or published by friend users.
Therefore, different homogeneous graphs can be obtained
by projection for nodes of the same type. We promote here
that the dependencies might be learned in an unified way
and directly from the data under general and non restrictive
hypothesis. This is made possible by a change of paradigm
w.r.t. conventional approaches which is implemented here
by using a latent representation space common to all the
node types in the network.

3. MODEL

3.1 Learning latent node representations
We first introduce the method for the case where no at-

tribute (content) is associated to graph nodes and then de-
scribe in Section 3.2 a natural extension for incorporating
node content. The underlying ideas of the method are as
follows:

• Each node will be mapped onto a latent representation
in a vectorial space RZ . The latent space is common
to all node types.

• The new metric developed on this latent representation
space RZ is such that two connected nodes will tend to
have similar representations (this is an extension of the
smoothness assumption to heterogeneous networks).

• For each node type, a classification function will be
learned. It takes as input a latent node representation
and computes associated class label. A linear function
will be used here to ensure smoothness in the clas-
sification decision while avoiding overfitting the new
space.

The latent projection space is learned according to two con-
straints: smoothness and class separability of the projec-
tions. If one considers nodes of the same type, the smooth-
ness constraint tends to group nodes that are linked by a
path in the graph, whatever the nature of the path is (homo-
geneous or heterogeneous). The strength of this constraint
decreases with the length of the path. This is an extension of
the classical smoothness hypothesis on homogeneous graphs.
On the other hand, if one considers nodes of different types,
their projections will be close if they share multiple con-
nections in the graph. This will happen for example if the
classes in two node types are correlated (see for example Fig-
ure 5). This is also how dependencies or correlations between
the different label sets are captured. Besides smoothness,
the separability imposes an additional constraint on the la-
tent projections. It is defined on the labeled nodes, but also
operates on the unlabeled nodes representations through the
diffusion mechanism. An alternative approach would be to
learn a separate latent space for every pair of node types.
This would be, however, too costly and not allow exploit-
ing multiple dependencies between label sets. Note that
exploiting node types pairs dependencies has been proposed
by some authors [8, 11] for the case where all types of nodes
share the same labels set.
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(a) Original Heterogeneous graph
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(b) Homogeneous graph of users
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(c) Homogeneous graph of photos built
using two different projection meth-
ods: connecting photos published by
the same author (purple relation) and
connecting photos published by friend
authors (green relation)

Figure 3: (a) An heterogeneous network that can be mapped to different homogeneous networks (b), (c).
Using Homogeneous models for classification of such a network is not trivial since several projection methods
exist as shown in (c).

3.1.1 Transductive classification model
Let us denote by zi ∈ RZ the latent representation of

node xi. In order to capture the graph metric in the la-
tent space, we impose the following loss which embodies the
metric smoothness constraint and forces correlated nodes to
have similar representations:∑

i,j/wi,j 6=0

wi,j ||zi − zj ||2 (2)

We are using an L2 norm in the latent space, but other
metrics could be used as well. This term is similar to the
smoothness term for Equation 1 except that it is defined in
the latent space and not in the label space as in Equation
1. The mapping onto the latent space is learned so that
the labels for each type of node can be predicted from the
latent representations. For that, we consider a linear clas-
sification function for each type of node k denoted by fkθ .
This function takes as input a node representation and out-
puts the predicted label(s). The f -functions can be learned
by minimizing a loss on labeled data as follows:∑̀

i=1

∆(f tiθ (zi), yi) (3)

where ∆(f tiθ (zi), yi) is the loss of predicting labels f tiθ (zi)
instead of observed labels yi. The final objective loss of our
model combines the classification and regularization losses
3 and 2:

L(z, θ) =
∑̀
i=1

∆(f tiθ (zi), yi) + λ
∑

i,j/wi,j 6=0

wi,j ||zi − zj ||2 (4)

The minimization of this loss is performed both on the θ
parameters and on the zi representations. It aims at finding
a trade-off between the smoothness over the latent repre-
sentations of correlated nodes Z and the predicted observed
labels in Yk. Optimizing this loss will allow us to learn:

• The projection zi of each node xi in the latent space.

• The classification functions fkθ for each nodes type k
which transforms the latent space to category scores.

3.1.2 Learning
Learning consists in minimizing the loss function defined

in Equation 4. Different optimization methods can be con-
sidered. We have used a Stochastic Gradient Descent Method.
The algorithm is detailed in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent Algorithm

1: procedure Learning(x,w, ε, λ)
2: for A fixed number of iterations do
3: Choose a (xi, xj) at random with wi,j > 0.
4: if i ≤ ` then . if xi is labeled

5: θ ← θ + ε∇θ∆(f
ti
θ (zi), yi)

6: zi ← zi + ε∇zi∆(f
ti
θ (zi), yi)

7: end if
8: if j ≤ ` then . if xj is labeled

9: θ ← θ + ε∇θ∆(f
tj
θ (zj), yj)

10: zj ← zj + ε∇zj ∆(f
tj
θ (zj), yj)

11: end if
12: zi ← zi + ελ∇zi ||zi − zj ||2
13: zj ← zj + ελ∇zj ||zi − zj ||2
14: end for
15: end procedure

The algorithm chooses iteratively a pair of connected nodes
and then makes a gradient update over the parameters of
the model. If one of the chosen nodes is labeled, the algo-
rithm first performs an update according to the first term
of Equation 3. This update – lines 5-6 and 9-10 – consists
in successively modifying the parameters of the classifica-
tion function θ and of the latent representations zi and zj
so as to minimize the classification loss term. Note that this
step not only modifies the classifier parameter θ, but also
the node representation z. Then, the model updates node
representation z w.r.t the smoothness term of Equation 2 –
lines 12-13. If the node is unlabeled, only the later step will
be performed. Nevertheless, the classification constraint will
propagate to these unlabeled nodes via their connection to
labeled ones.

Note that, while we use a stochastic gradient descent,
other methods like minibatch gradients or batch algorithms
could be used as well. Here, ε is the gradient step, and λ
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is the trade-off between the classification and smoothness
terms.

In our implementation, we have used an hinge-loss func-
tion for ∆:

∆(f tθ(z), y) =
∑
k=1

max(0; 1− ykf t,kθ (z)) (5)

where yk is the desired score of category k for node x (−1 or

+1) and f t,kθ (z) is the predicted score of category k by the
model. Here again other loss functions, e.g. logistic could
be used.

3.1.3 Complexity
At each step of the algorithm, one has to make two up-

dates over the latent representation – lines 12-13 – and, zero,
one or two additional updates if the chosen nodes are la-
beled. These updates have to be repeated several times,
over all pairs of connected nodes. Let us denote by E the
number of edges in the network, the complexity algorithm is
thus O(E + `). The learning time thus scales linearly with
regard to the number of edges which is the same complexity
than classical homogeneous models.
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Figure 4: Bibliographic heterogeneous network with
content modeled as word nodes.

3.2 Heterogeneous model and content
The objective function in Equation 4 only considers the

graph structure through its weight matrix and node labels.
Often, attributes are associated to nodes (e.g. textual con-
tent for comments or visual content for images). Let us
consider as an example the case of textual attributes (the
description is similar for any other discrete set of attributes
or features associated to a node type). The above formula-
tion allows to easily integrate this information into the model
by associating each term to a new node like in [11] and a
weighted link between this term and any node containing it.
The weight of the relation may be defined according to any
relevant measure (e.g. word frequency).

This solution is illustrated in Figure 4. In that case, the
model jointly learns a latent representation of all the ele-
ments of the network – users, documents, words. Documents
and their content words will then tend to have close latent
representations, so will words appearing in the same docu-
ments or documents sharing similar words, even if they are
not directly connected in the network. Nodes associated to
words are special in the sense that they do not have associ-
ated labels and that in most real applications they do not

share direct connections - except if one makes use of some
term ontology for example, in which case this information
could again be naturally incorporated in the model. Their
representation does not appear in the classification loss term
in Equation 4, but only in the smoothing term.

4. EXPERIMENTS

4.1 Datasets
Experiments have been performed on two datasets respec-

tively extracted from DBLP and Flickr. For the former, the
task is monolabel classification, and for the latter multilabel
classification. For DBLP two families of experiments - with-
out and with content words have been performed. They are
respectively denoted by DBLP No Content and DBLP With
Content hereafter. For the Flickr experiments, no additional
node characteristics has been considered. The two datasets
are introduced below.

The DBLP dataset is a bibliographic network composed
of authors and papers. This dataset was published in [22],
where the task was heterogeneous classification with the au-
thors and papers sharing the same set of labels (their re-
search domain). The task studied here considers two dif-
ferent sets of labels: authors are labeled with their research
domain (4 different domains) while papers are labeled with
the name of the conference where they were published (20
labels). Authors and papers are connected through a au-
thorship relation. The version without content is composed
of two types of nodes and the graph is bipartite with one
relation type. The version with content has three types of
nodes – authors, papers and words – where each paper is
connected to the nodes of its title – as shown in Figure 4.
Classification is monolabel on papers and authors. General
statistics about this corpus are given in Table 1.

The Flickr corpus is a dataset of photos and users. The
photo labels correspond to different possible tags while the
user labels are their subscribed groups. The classification
problem is multi-label: images and users may belong to more
than one category. Photos are related to users through an
authorship relation, while users are related to other users
through a friendship relation. This dataset is illustrated in
Figure 3 (a) and statistics are given in Table 1. We have
kept the image tags that appear in at least 500 images, and
user categories that appear also at least 500 times in the
dataset resulting in 21 possible labels for photos and 42 for
authors2.

4.2 Models
We have compared the proposed approach denoted by

LSHM (Latent Space Heterogeneous Model) with two other
models representative of the main-stream families of algo-
rithms. The first one transforms the heterogeneous classi-
fication problem into multiple homogeneous problems. The
second one performs an unsupervised projection of the het-
erogeneous network onto a latent space and then applies
a multi-class classification algotirhm on this space. Both
models are state of the art approaches. Note that except for
[2, 14] there does not exist any algorithm that handles the
relational classification problem on heterogeneous networks
with disjoint label sets. More precisely, the first model, de-

2The dataset is available at http://www-
poleia.lip6.fr/˜jacoby/Research/research en.html
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Nodes
Type Nb. Nodes Nb. Labeled Nodes Nb. Labels
Paper 14,376 14,376 20

DBLP Author 14,475 4,057 4
No content

Edges
Type Nb. Edges

Author→Paper 41,794

Nodes
Paper 14,376 14,376 20

Author 14,475 4,057 4
DBLP Words 8,920 0

With Content
Edges

Author→Paper 41,794
Paper→Word 114,624

Flickr
Nodes

Photos 46,926 8,766 21
User 4,760 3,476 42

Edges
User←User 175,779

User←Photo 46,926

Table 1: Statistics on the three datasets

Model Type of node Training Size
10% 30% 50%

MTH
Author 58.8 65.0 69.2
Paper 28.2 32.7 34.8

ULS
Author 27.0 27.7 27.6
Paper 11.0 12.4 12.5

LSHM (no Content)
Author 64.9 75 83
Paper 30.4 34.5 37.2

LSHM (with Content)
Author 67 82 87.1
Paper 30.6 35.6 37.9

Table 2: Accuracy over the DBLP datasets with a
latent space of size 30.

Model Type of node Training Size
10% 30% 50%

MTH

User 42 46.8 48.7
Photo (Same Author) 35.6 59.4 65.5
Photo (Author are friends) 19.3 21.7 22
Photo (Author are same or
friends)

22.4 31.3 32.4

ULS
User 26.1 28.0 28.3
Photo 9.8 9.8 9.9

LSHM
User 42.9 45.7 49.1
Photo 43.3 61.6 68.1

Table 3: P@1 over the Flickr datasets with a latent
space of size 200

noted by Mapping to Homogeneous Model (MTH),
uses multiple homogeneous graphs, one for each node type,
to represent the heterogeneous network. For each homoge-
neous problem, we use the model proposed in [6] that min-
imizes the loss in Equation 1. It does not make use of the
correlations between labels of nodes types.

The homogeneous graphs have been built as follows:

• For the DBLP corpus, the graph of authors is built by
connecting two co-authors; the graph of papers is built
by connecting two papers written by the same author.

• For Flickr, the graph of users is built by connecting
two friends. Different graphs of photos are possible:

– The Same author graph is built by connecting
two photos that have the same author.

– The Author are friends graph is built by con-
necting two photos that have been published by
two friends.

– The Author are same or friends graph is built
by connecting two photos that have been pub-
lished by the same user of by two friends.

Note that for these tests, the model “Same author” where
two images are linked through an intermediate author node,
shares similarities with the Graffiti model [2] which uses a
2 hops random walk for connecting nodes of the same type
linked by a path of length 2 and separated by a node from
another type.

The second model we have compared with, denoted by
ULS (Unsupervised Latent Space), learns a latent represen-
tation for each node of the graph without using the labels
and learns to predict the labels based on the latent rep-
resentations. We use a variant of the model proposed in
[4] for learning embeddings of knowledge databases. This
model learns unsupervised projections of relational knowl-
edge bases with a specific metric for each relation type. Here
we used only one metric for all relations. Compared to our
model, the main difference is that the latent space is built
in an unsupervised way – the objective is to keep the graph
structure in the latent space – while our method aims at
finding ”the best” representations for a particular classifica-
tion problem.
Experiments were performed with 10 random training la-
beled sets and the reported performance was obtained by
averaging those obtained over the 10 runs. Different config-
urations were tested:

• Experiments were performed with different training
sizes: 10%, 30%, 50%. The training size refers to the
proportion of labeled nodes used in the training
set. For example, in the DBLP No Content dataset,
a training set of 10% means that 1,437 papers over
14,376 and 405 users over 4,050 labeled users were con-
sidered. Note that for this dataset, all papers are la-
beled whereas only 4,050 users over 14,475 are labeled.
Unlabeled nodes will only appear in the smoothing
term of Equation 4. The evaluation was performed
on the labeled nodes not used during training.

• The gradient descent step for LSHM was fixed to 0.1 –
similar performance in terms of accuracy was obtained
at the price of a lower convergence speed.
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• The dimension of the projection spaces for ULS and
LSHM is 30 was chosen that yields good performance
for both models in our experiments.

• Since there are much more links among users than
between users and photos in the Flickr dataset, the
weights of the relations have been normalized in order
to avoid that the user → user relations have more in-
fluence than the user → photo relations. Weight for
user → photo relations is 1 while weight for user →
user has been set to 0.1.

4.3 Evaluation measures

Mono-Label Datasets: . In the case of mono-label datasets
(DBLP with and without content), we consider that the pre-
dicted category is the category with the highest score. We
make use of an accuracy measure which is the ratio between
the number of good classification and the number of total
testing nodes.

Multi-Label Dataset: . For multi-label datasets, after pre-
dicting the scores of the different categories, one has to de-
cide which subset of categories to assign to any node of the
network. For the evaluation, we have considered two dif-
ferent evaluation measures: The Precision at 1 (P@1)
measures the percentage of nodes for which the category
with the highest score is a relevant category. The Preci-
sion at k (P@k) is the proportion of correct labels in the
set of k labels with the highest predicted scores. For each
evaluation node, k is artificially chosen to be the number of
relevant categories. This measure is an optimistic measure
of the capacity of a model to correctly rank the k relevant
categories of any node.

4.4 Results

4.4.1 Quantitative evaluation
Tables 2 and 3 show the performance obtained on the

different datasets for different training set sizes. The evalu-
ation of the models is separately made on two different types
of nodes – paper and author for DBLP, user and photo for
Flickr. Globally, our model is able to outperform the other
models. For example, for the DBLP dataset without con-
tent, at a training size of 10%, our model obtains 64.9% ac-
curacy on the author nodes and 30.4% on the paper nodes
while the MTH model obtains 58.8% for the authors and
28.2% for the papers. The ULS model only obtains 27% for
the authors and 11% for the papers. This is due to the fact
that the latent representations are learned independently of
the classifiers, without using training labels3. When using
the graph with content – i.e. when words are integrated into
the heterogeneous network – our model obtains even better
results and outperforms the heterogeneous model without
content, showing the ability of our method to handle not
only different types of nodes, but also content information.
Compared to the MTH model performance increase is im-
portant for author nodes, and smaller for paper nodes. This
is probably because there are far less labeled authors than

3The ULS results have been obtained in a latent space of
size 30. We have tested many different sizes, and only the
best results are reported here.

Training
Size

Z Acc.
Author

Acc.
Paper

10%

MTH 58.8 28.2
ULS 27.0 11.0
10 63.4 28.8
20 62.6 29.1
30 64.9 30.4
50 62.5 29.7
100 62.3 29.1

30%

MTH 65.0 32.7
ULS 27.7 12.4
10 74.3 33.9
20 74.6 33.6
30 75 34.5
50 72.8 33.5
100 72.7 33.4

50%

MTH 69.2 34.8
ULS 27.6 12.5
10 83.6 37
20 82.6 37.2
30 83 37.2
50 80.6 36
100 78.8 36

Table 4: (a) Accuracy on DBLP No Content de-
pending on the representation size Z.

papers so that the classification task on authors is more dif-
ficult and the simpler models fail. It is also more important
when the proportion of labeled is increased (e.g. increase of
18% for 50% of labeled nodes). Here our more sophisticated
LSHM model is able to take advantage of the additional
information provided by these labels.

For Flickr, we compared LSHM model with different pro-
jected graphs for the photos in the MTH model, as described
in section 2. The performance for P@1 and P@k are given
in Table 5. The performance increase is much smaller here
than with DBLP, which is probably due to the pre-eminence
of ”friend” and ”same author” relations respectively for users
and photos. Said otherwise, for this Flickr dataset, much
of the information is present in these two types of relations
only. On the other hand, the proposed model allows us to
reach best performance without testing for many graph pro-
jections.

4.4.2 Influence of the Representation size
Let us now examine how performance varies depending

on the size of the latent space Z – Tables 4 and 5. For the
DBLP corpus, using a space of 30 dimensions often gives
the best results for all training sizes. When the number
of dimensions is too small, the model is unable to find good
representations, while when it is too large, the model is over-
fitting, resulting in a loss of performance. Concerning the
Flickr corpus for which the graph topology is more complex,
a latent space of 200 dimensions allows one to obtain good
performance on both photos and users. When restricting
the dimensions of this space to 20, the model seems to con-
centrate more on users than on photos. This is probably due
to the fact that users are connected through direct relations,
while photos are connected through paths of minimum size
2: when the model does not have enough representation ca-
pacity, it tends to better propagate on close nodes, and is
not able to model longer propagations.
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Training
Size

Z P@1/P@k
Photo

P@1/P@k
User

10%

MTH 35.6/35.4 42/33.4
ULS 26.1/21.3 9.8/10.5
20 38.4/33.8 46.5/33.5
50 41.3/38 39.7/29.6
100 43.3/40.4 39.8/30.5
200 43.1/41.7 42.9/30.6

30%

MTH 59.4/56.3 46.8/36.2
ULS 28.0/23.2 9.8/10.6
20 48.8/46.4 47.6/33.7
50 55/53.9 46.3/33.7
100 60.4/58 45.6/33.5
200 61.6/58.2 45.7/33.5

50%

MTH 65.5/63.7 48.7/36.0
ULS 28.3/23.5 9.9/10.8
20 50.3/48.7 49.2/30.5
50 57.4/57.3 47.3/36.4
100 67.6/64.8 48.3/35.1
200 68.1/64.7 49.1/34.6

Table 5: P@1 and P@k on Flickr depending on the
representation size Z w.r.t MTH and ULS.

4.4.3 Qualitative results
In order to visualize the latent representations, we have

performed a PCA over these representations for both arti-
cles and authors on the DBLP dataset for testing nodes. A
2 dimensional PCA projection corresponding to the first 2
axis is illustrated in Figure 5. The right figure shows all
the labeled nodes in the latent space (after PCA dimension
reduction) - different shapes correspond to different types
of nodes (large diamond shapes for authors, small diamonds
for conferences), and different colors correspond to differ-
ent labels. PCA projection shows that the proposed model
is able to map nodes with the same labels onto the same
parts of the latent space. The left part of the figure shows
the average latent representation projection for each label.
The four diamonds correspond to the centroid of the four
authors research domains, while the 20 smaller star points
correspond to the centroids of the papers published at each
of the 20 conferences. One can see that, for any particu-
lar research domain corresponding to the author classes, the
model is able to find a latent representation which is close to
the conferences that are related to this domain, showing the
ability of the model to find correlation between the labels of
the different types of nodes.

5. RELATED WORK
Graph node classification has motivated a lot of work dur-

ing the last decade and different models have been proposed.
Two main families of models can be distinguished:
(i) Collective classification techniques are extensions of in-
ductive learning to relational data. They consider both node
attributes, labels and their dependencies. The classification
problem is formulated as an optimal assignment of labels to
the vertices of a graph. Since exact algorithms cannot be
used in general for this combinatorial problem, approximate
iterative algorithms have been developed. Sen et al. [19]
provide a general introduction and a comparison of these
models. They distinguish between local and global models.
The former such as Iterative Classification [19] and its vari-
ants like SICA [18], Gibbs Sampling [17], or Stacked Learning

[15], make use of local classifiers taking as input the node
attributes and statistics on the neighbors labels. The latter
attempt to optimize a global function using graphical mod-
els, e.g. Markov Random Fields trained for example using
loopy belief propagation. In practice, they advocate the use
of simple local models which offer similar performance as
more complex graphical models and do not suffer from con-
vergence problems exhibited by the latter. All these meth-
ods have been proposed for homogeneous networks whereas
heterogeneous classification was explicitly mentioned as an
open problem.
(ii) The second family of models consists of semi-supervised
and transductive regularized models – [28], [3] and [27] –
which are based on the minimization of an objective func-
tion that encourages connected nodes to have the same la-
bels. This family of models has been initially proposed for
pure relational classification (no content associated to nodes)
and for homogeneous networks. It has been extensively used
in many different contexts. Extensions for handling node
content information have been developed with applications
to social network labeling [6] and Web-spam detection [1].
Several extensions have been proposed for dealing with more
complex networks. For example, algorithms have been de-
veloped for multi-relational graphs, where nodes are all of
the same type, but can be connected through multiple rela-
tions which will have different influences on the label propa-
gation. These methods can learn from the data the weights
of the different relations, and the multi-graph is then re-
duced to a simple graph by combining the different types of
relations –[25, 12, 9]. Note that besides node classification,
other methods have been proposed for other tasks like link-
prediction [7] for example
Mining heterogeneous networks is a much more recent do-
main and different tasks have been addressed: classification
of nodes [11, 10, 8, 2], link prediction [5],[24], influence anal-
ysis [16], clustering [20], entity similarity search [26], [21].
We will concentrate here on classification which has been
addressed in a few papers.

Most of the proposed models are extensions of algorithms
developed for homogeneous models. Typical of the trans-
ductive regularized models extensions is the work by Ji et
al. [11] which is inspired by the homogeneous model of Zhou
et al. [27]. For each couple of node types, they consider the
weight matrix of the bipartite subgraph corresponding to
the edges linking the two node types. The objective func-
tion is then a linear combination of the smoothness con-
straints defined over each of these matrices. For instance in
an heterogeneous network of authors and papers like DBLP,
this model will consider three relation types: author-author,
paper-paper and author-paper and as many weight matrices.
Instead of one smoothing term in the homogeneous case,
the number of smoothing loss terms is proportional to the
square of the number of node types (n(n−1)/2 if there are n
node types) and of course there are as many regularization
coefficients to set up which might become problematic for
complex networks. Note that in these approaches, the au-
thors do not make the choice of an a priori graph projections
but consider all possible binary relationships between node
types. An extension of this work [10] is proposed for a rank-
ing problem: the objects in each class are ranked according
to their class relevance. A very similar formulation is pro-
posed in [8] which is also a direct extension of the algorithm
in [27]. Again, multiple weight matrices between node type
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(a) Centroid of different authors and papers
labels (unlabeled nodes)

(b) All nodes

Figure 5: PCA on the DBLP corpus computed over the latent representation of the testing nodes projection
when using 10% nodes for training.

sets are introduced and linearly combined in a loss func-
tion. All these extensions consider that the different types
of nodes share the same set of categories. In our model, the
latent space formulation allows to bypass this limitation.

Some authors have proposed extensions of the collective
classification methods [19]. In a series of papers, Kong, Yu
and colleagues [14, 13] make use of the notion of meta-path
for extending the Iterative Classification technique to het-
erogeneous networks both for mono-label and multi-label
classification. A meta-path is a path in an heterogeneous
graph that links two nodes through an heterogeneous path.
For instance in a bibliographic network, the meta-path “Pa-

per
cite−1

−→ Author
cite−→ Paper” connects two papers with the

same author. All the possible non-redundant meta-paths
shorter than a chosen length are used. Their algorithm first
extracts a certain number of relevant meta paths and con-
siders the nodes linked by such paths as neighbors. Then it
applies the ICA algorithm to the corresponding graph. Only
one type of nodes is considered for a classification task since
relevant meta path may differ from one type to another.
In their experiments, they consider meta paths joining two
nodes of the same type. Heuristics for limiting the number
of meta paths are used. This is equivalent to defining a pro-
jection graph for each class based on these meta paths and
then doing collective classification. These methods consider
both the relational structure and node characteristics, and
make use of the latter to initialize the node class probabili-
ties. Here again the proposed method relies on heuristics for
defining the paths, and does not directly exploit inter-node
types dependencies.

To our knowledge, the only existing model addressing di-
rectly heterogeneous network classification with different la-
bel sets per node type is [2]. The algorithm is based on a
random walk method, where, in addition to simple jumps
to neighboring nodes which could be of any type, 2-hop
jumps between nodes of the same type are allowed. Nodes
of the same type can then be connected by a path of size
2 where the intermediate node is of a different type. La-
bels propagate among nodes of the same type. Paths join-
ing nodes of the same type and longer than 2 are ignored.
However the propagation mechanism allows the diffusion of
labels on longer paths with a decreasing influence when the

path length increases. This algorithm makes use of node
characteristics in order to initialize node class distributions.
Although the exact correspondence with our algorithm is
difficult to analyze, this method intuitively corresponds to
a random walk on an extended graph where connections
corresponding to two hops between nodes of the same type
define the connection graph. Compared to this approach,
our model is able to consider the correlations between the
labels of connected nodes of different types through the la-
tent space projection which is not the case in their model. It
also learns directly a discriminant function instead of prop-
agating initial label distributions modulated by node class
authority.

6. CONCLUSION
We have proposed a new model able to label nodes of het-

erogeneous networks where the nodes are of different types,
each type corresponding to a particular set of possible cat-
egories. Our method is able to use the correlation between
the labels of two connected nodes of different types, and thus
to use the complex structure of the graph for labeling. Our
algorithm is based on the idea of computing a latent repre-
sentation of nodes in a space that is common to all the possi-
ble types of nodes, and to assume that two connected nodes
tend to have close latent representations. The labels are
then deduced from these representations. Our experiments
on three datasets show that the proposed model outperforms
classical approaches, and qualitative analysis show that the
proposed method effectively captures the inter-dependencies
between the labels of different types of nodes. Different ex-
tensions of this model are currently being investigated: the
first one is to deal with multi-relational heterogeneous net-
works – i.e. heterogeneous networks where two nodes can be
connected with more than one relation – and dynamic het-
erogeneous networks. We are also working on an extension
which allows one to learn sparse representation of nodes in
the graph.
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